

Ayudas para asistencia a las Jornadas del GHEP-ISFG

Communications

Communications

i. STR mutations modelling

- **O12:** "How often have X- and aut-STRs mutations equivocal parental origin assigned?" Sofia Antão-Sousa, Eduardo Conde-Sousa, Leonor Gusmão, António Amorim, <u>Nádia Pinto</u>
- P100: "How frequently are aut- and X-STRs multistep mutations perceived as single-step?" Sofia Antão-Sousa, Eduardo Conde-Sousa, Leonor Gusmão, António Amorim, Nádia Pinto

Communications

ii. Weighing genetic relatedness considering X-chromosome aneuploidies

P.95: "Novel mathematical framework for genetic relatedness analysis involving X- chromosome aneuploidies"

Marisa Faustino, Chiara Turchi, Daniel Kling, Leonor Gusmão, Antonio Amorim, Nádia Pinto

Communications

iii. Quantification of forensic genetic evidence

O32: "Statistical analysis tools of mixture DNA samples: When the same software provide different results"

<u>Camila Costa</u>, Carolina Figueiredo, António Amorim, Lourdes Prieto, Sandra Costa, Paulo Miguel Ferreira, Nádia Pinto

29th Congress of the International Society for Forensic Genetics

Statistical Analysis Tools Of Mixture DNA Samples: When The Same Software Provides Different Results

Camila Costa, Carolina Figueiredo, António Amorim, Lourdes Prieto, Sandra Costa, Paulo Miguel Ferreira, Nádia Pinto

September 2, 2022

CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

UNIÃO EUROPEIA Fundo Social Europeu

PhD Studentship reference:2021.05655.BD

INTRODUCTION | Quantifying the Genetic Evidence Statistical models

Figure 1: Representation of a two contributors' mixture for the marker D2S411.

7

SHORT COMMUNICATION |

SHORT COMMUNICATION |Aims + Material and Methods

SHORT COMMUNICATION Aims + Material and Methods

	Values					
Parameters	Qualitative	Quantitative 1	Quantitative 2			
Number of contributors	Estimated	Estimated	Estimated			
Co-ancestry Coefficient	0.010	0.010	0.010			
Drop-in frequency	0.05	0.05	0.05			
Drop-in parameters' distribution	N/A	λ: 0.01	Uniform			
Drop-in cap	N/A	N/A	100			
Dropout	0.1	а	а			
Minimum allele frequency	0.001	0.001	b			
Threshold detection	N/A	100	100			
Stutters	No	Yes	Yes			
^a Dropout is directly estimated through the peak height distribution.						

^b Per locus specified by the software considering N=0

N/A: Not Applicable

SHORT COMMUNICATION |Results and Discussion

SHORT COMMUNICATION |Results and Discussion

$$D = ABS [Log_{10}(LR1) - Log_{10}(LR2)]$$

SHORT COMMUNICATION | Results and Discussion

	Estimated Number of Contributors					
$D = ABS [Log_{10}(LR1)]$		Two			Three	
– Log ₁₀ (LR2)]	Qual.	Qual.	Quant.	Qual.	Qual.	Quant. 1
	Quant. 1	Quant.	Quant.	Quant. 1	Quant.	Quant. 2
0 < D < 2	8%	2 6%	2 73%	13%	2 9%	59%
2 < D < 4	13%	15%	19%	8%	8%	24%
4 < D < 6	19%	13%	4%	8%	9%	9%
6 < D < 8	5%	6%	3%	14%	10%	1%
8 < D < 10	18%	13%	0%	12%	10%	1%
D > 10	37%	46%	1%	46%	54%	5%
MAXIMUM DIFFERENCE (log ₁₀ units)	15.206	16.682	24.288	18.707	19.341	15.970

SHORT COMMUNICATION | Results and Discussion

SHORT COMMUNICATION | Results and Discussion

	Estimated Number of Contributors					
$D = ABS [Log_{10}(LR1)]$		Two			Three	
– Log ₁₀ (LR2)]	Qual.	Qual.	Quant.	Qual.	Qual.	Quant. 1
	Quant. 1	Quant.	Quant.	Quant. 1	Quant.	Quant. 2
0 <d<2< th=""><th>8%</th><th>2 6%</th><th>73%</th><th>13%</th><th>2 9%</th><th>59%</th></d<2<>	8%	2 6%	73%	13%	2 9%	59%
2 < D < 4	13%	15%	19%	8%	8%	24%
4 < D < 6	19%	13%	4%	8%	9%	9%
6 <d<8< th=""><th>5%</th><th>6%</th><th>3%</th><th>14%</th><th>10%</th><th>1%</th></d<8<>	5%	6%	3%	14%	10%	1%
8 < D < 10	18%	13%	0%	12%	10%	1%
D > 10	37%	46%	1%	46%	54%	5%
MAXIMUM DIFFERENCE	15.206	16.682	24.288	18.707	19.341	15.970
(log ₁₀ units)						

SHORT COMMUNICATION |Conclusions

- Software based on <u>different models</u> (Qualitative vs. Quantitative) Largest discrepancies between computed LR values
- Software based on the <u>same model</u> (Quantitative)
 ≠ mathematical, statistical and informatics models ≠ results
- Use of more than one informatic tool in forensic routine Confrontations between possibly different results Identify difficult cases

SAME SOFTWARE, DIFFERENT RESULTS | Software parameters

- <u>Software based on the same model provides different</u> <u>results</u> due to different mathematical computations
- Software parameters values must be established by
 <u>the expert</u> and enter on the software prior to any
 computation

Values	LRmix Studio		EuroForMix		STRmix TM	
Parameters	Default	Variation	Default	Variation	Default	Variation
Number of contributors (NOC)	Estimated	Estimated +1 Estimated -1	Estimated	Estimated +1 Estimated -1	Estimated	Estimated +1 Estimated -1
Co-ancestry Coefficient (F _{ST})	0.010	0.000 0.015 0.030	0.010	0.000 0.015 0.030	0.010	0.000 0.015 0.030
Drop-in frequency	0.05	0.00 0.10	0.05	0.00 0.10	0.05	0.00 0.10
Drop-in parameters' distribution	_	_	λ: 0.01	λ: 0.05	y: (0.1,0.1)	Uniform
Threshold detection	-	_	100	150	100	150
Stutter	_	_	Yes.	No.	_	_

SAME SOFTWARE, DIFFERENT RESULTS | Software parameters

Number of Contributors

SAME SOFTWARE, DIFFERENT RESULTS | Software parameters

SAME SOFTWARE, DIFFERENT RESULTS | Different software versions

FINAL REMARKS |

- Different software compute different LR results, regardless of whether the informatics tools consider the quantitative information of the electropherogram or not.
- Use of more than one informatic tool in forensic routine to confront obtained results and identify difficult cases.
- Importance of a correct software parameter estimation, so that the computation of the LR value is as accurate as possible.
- Awareness of updates made to software in use.

ACKNOWLEDGMENT |

Nádia Pinto Carolina Figueiredo António Amorim Lourdes Prieto Paulo Miguel Ferreira Sandra Costa

