

XXX Jornadas del GHEP-ISFG

Presentación de resultados de la Comisión de Trabajo:

INTERPRETACIÓN ESTADÍSTICA EN CASOS DE IDENTIFICACIÓN CON MEZCLAS

19 de septiembre de 2025

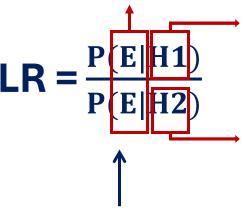
Barcelona, España

Camila Costa, Nádia Pinto, Lourdes Prieto

BREVE CONTEXTUALIZACIÓN

XXX Jornadas

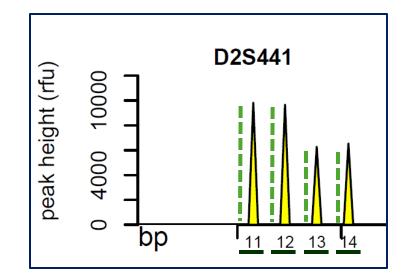
<u>↑ complejidad</u> de las muestras


recuperadas de escenas del crimen

↑ Desarrollo e
implementación
en la rutina forense
de herramientas
informáticas que
permitan abordar
esta complejidad

Evidencia

"POI es contribuyente de la muestra de evidencia."


"POI no es contribuyente de la evidencia ni está genéticamente relacionado con ningún contribuyente."

Cualitativo

Información cualitativa

Cuantitativo

- Información cualitativa
- Información cuantitativa

BREVE CONTEXTUALIZACIÓN

XXX Jornadas

↑ complejidad de las muestras recuperadas de escenas del crimen

↑ Desarrollo e
implementación
en la rutina forense
de herramientas
informáticas que
permitan abordar
esta complejidad

 $LR = \frac{P(E|H1)}{P(E|H2)}$

Cualitativo

- Número de contribuyentθde la evidencia (estimado)
- Coeficiente de ascendencia(θ)
- Frecuencia alélica mínima
- Frecuencia Dropout
- Frecuencia Drop-in
- Modelo Drop-in
- Modelo distribución de las alturas alélicas
- Limite de detección
- Modelo degradación
- Modelo picos stutters (los distintos tipos)

OBJETIVOS

 Comprender cómo los diferentes laboratorios abordan la interpretación estadística de mezclas de ADN en casos de identificación

- Saber si ya implementaron herramientas no binarias (cualitativo o cuantitativo) y cómo reportan los resultados
- Conocer la metodología utilizada para la cuantificación de la prueba en casos de identificación con mezclas por análisis de casos simulados

TITLE PAGE

XXX Jornadas

Enviado a Forensic Science International: Genetics el 4 de septiembre de 2025

Peer review status

Statistical Interpretation of Cases Involving Mixtures: A Spanish and Portuguese-Speaking Working Group (GHEP-ISFG) Collaborative Exercise

- Reviews completed: 1
- Review invitations accepted: 2
- Review invitations sent: 2+

Under Review

Last review activity: 16th September 2025 ①

METODOLOGÍA

XXX Jornadas

30 casos diferentes¹ muestra problema

(archivos con y sin artefactos)

+ referencia

¹ Muestras de la base de datos pública de la Iniciativa PROVEDIt de la Universidad de Boston (<u>https://lftdi.camden.rutgers.edu/provedit/</u>)

		MIXTURE CONDITIONS													
Ref. ID	Contributors ID	Proportion	Number of dilutions	Treatment	ng included in PCR	DNA extract quantified	Capilar number	Injection Time							
31	31_32	1:1	2	6 mU DNase I Degradation	0.03	2	1	5							
31	31_32	1:1	2	Untreated	0.062	1.2	4	25							
33	33_34	1:2	2	Untreated	0.375	0.7	1	5							
34	33_34	1:2	3	6 mU DNase I Degradation	0.045	1	1	5							
34	33_34	1:2	3	Untreated	0.093	0.8	4	25							
35	35_50	1:9	3	12 mU DNase I Degradation	0.9	0.9	1	15							
50	35_50	1:9	3	Untreated	0.8	0.8	1	5							
50	35_50	1:9	2	6 mU DNase I Degradation	0.7	0.7	4	25							
39	39_40	1:2	3	Untreated	0.8	0.8	1	15							
40	39_40	1:2	3	Untreated	0.045	0.8	2	15							
40	39_40	1:2	2	6 mU DNase I Degradation	0.189	1	4	25							
48	48_49	1:4	3	6 mU DNase I Degradation	0.155	0.8	1	5							
48	48_49	1:4	3	6 mU DNase I Degradation	0.075	0.8	2	15							
49	48_49	1:4	3	24 mU DNase I Degradation	0.155	1	1	15							
49	48_49	1:4	3	Untreated	0.315	0.6	4	25							
36	36_37_38	1:2:1	4	12 mU DNase I Degradation	0.06	1.1	1	5							
36	36_37_38	1:2:1	3	Untreated	0.06	0.7	5	25							
37	36_37_38	1:2:1	2	Untreated	0.5	0.6	2	5							
37	36_37_38	1:2:1	3	Untreated	0.124	0.7	4	25							
38	36_37_38	1:2:1	2	12 mU DNase I Degradation	0.252	0.9	3	15							
41	41_42_43	1:9:1	2	6 mU DNase I Degradation	0.341	1.1	1	5							
42	41_42_43	1:9:1	1	12 mU DNase I Degradation	0.693	1	3	15							
43	41_42_43	1:9:1	2	Untreated	0.5	0.6	4	25							
44	44_45_46	1:2:2	3	Untreated	0.075	0.6	1	5							
44	44_45_46	1:2:2	3	6 mU DNase I Degradation	0.155	0.9	4	25							
45	44_45_46	1:2:2	2	6 mU DNase I Degradation	0.625	0.8	2	15							
46	44_45_46	1:2:2	3	6 mU DNase I Degradation	0.155	0.9	4	15							
47	47_48_49	1:9:9	2	Untreated	0.5	0.7	1	5							
47	47_48_49	1:9:9	2	6 mU DNase I Degradation	0.75	1.1	3	15							
47	47 48 49	1:9:9	2	6 mU DNase I Degradation	0.589	1.1	4	25							

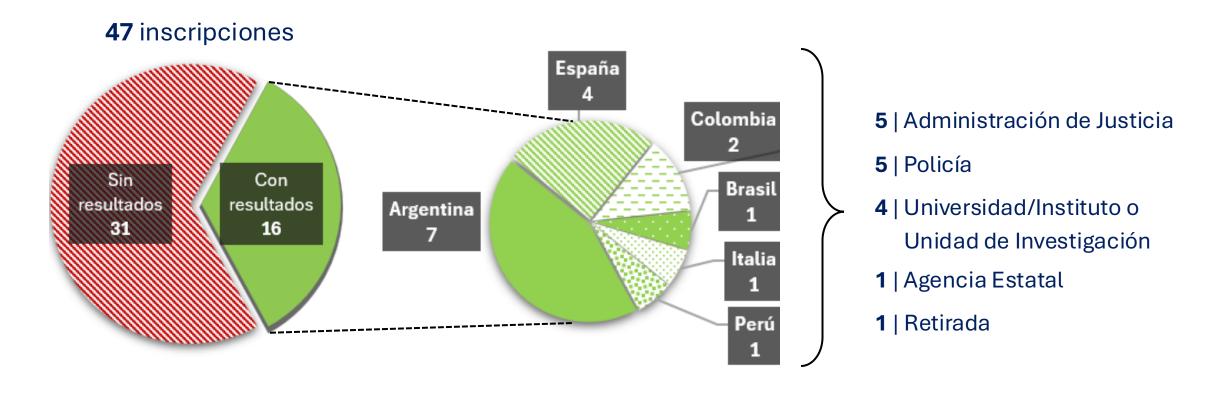
METODOLOGÍA | DATOS A INFORMAR

XXX Jornadas

30 casos diferentes¹
muestra problema
(archivos con y sin artefactos)
+ referencia

Cuantificación de la prueba considerando el software y las condiciones establecidas por el laboratorio

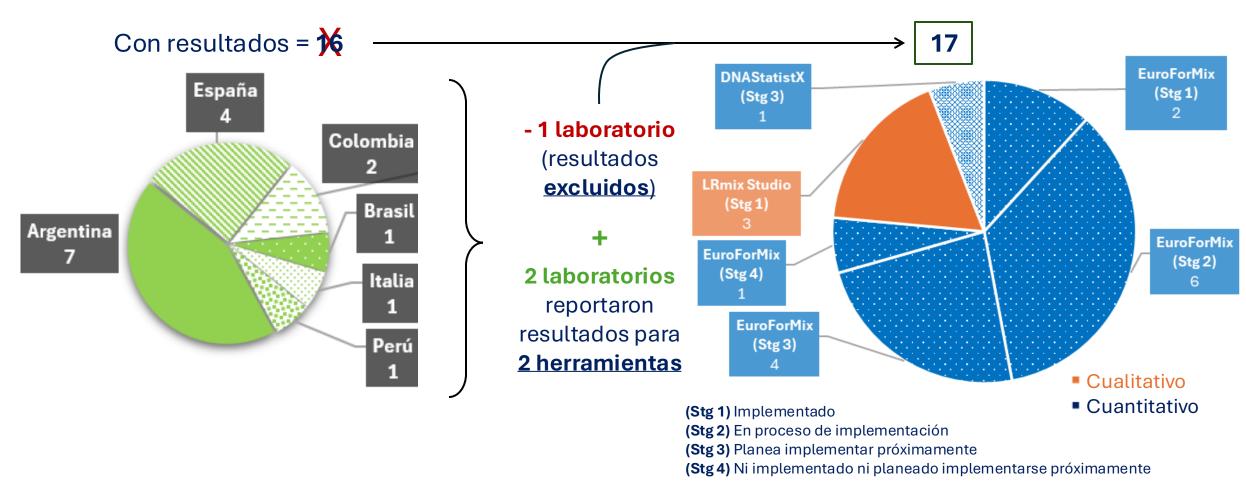
Resultado Final


- → Resultado final obtenido para los 30 casos
- → Software utilizado(s)
- → Condiciones y/o valores considerados en los parámetros de software utilizado(s) y justificación correspondiente
- → Base de datos de frecuencias alélicas utilizada
- → Otra(s) información(es) relevante(s) para permitir el recálculo de los resultados (por ejemplo, número de contribuyentes estimados para cada caso analizado, ...)

¹ Muestras de la base de datos pública de la Iniciativa PROVEDIt de la Universidad de Boston (https://lftdi.camden.rutgers.edu/provedit/)

RESULTADOS | PARTICIPACIONES

XXX Jornadas



"This underscores the critical need for casuistic laboratories to dedicate time to expert training and development."

RESULTADOS | HERRAMIENTAS UTILIZADAS

XXX Jornadas

(A) Específicos del Software y del Laboratorio

- \triangleright Coeficiente de ascendencia (θ)
- > Frecuencia alélica mínima
- Frecuencia Dropout
- > Frecuencia Drop-in
- * Modelo Drop-in
- * Limite de detección

$$LR = \frac{P(E|H1)}{P(E|H2)}$$

(B) Específicos del Caso

- Número de contribuyentes de la evidencia (estimado)
- * Modelo degradación
- * Modelo picos stutters (los distintos tipos)

* Sólo aplicable a herramientas basadas en el modelo cuantitativo

RESULTADOS | (A) Específicos del Software y del Laboratorio

XXX Jornadas

XXX Jornadas

Número de contribuyentes (NoC)

Modelado de Stutters

Modelado de Degradación

Solo cuantitativos

Otra decisión específica del caso es el uso de <u>muestras de</u> evidencia:

- Sin artefactos: ||||| |||||
- Con artefactos: ☐ EuroForMix → Best-fit

cualitativo cuantitativo

Permite probar automáticamente todas las combinaciones posibles de <u>rango NoC</u> + modelo (o no) <u>degradación</u> + modelo (o no) <u>stutters (back y/o forward)</u>

XXX Jornadas

Número de contribuyentes (NoC)

Modelado de Stutters

Modelado de Degradación

Introducido

- Cualitativo
- Cuantitativo

Generalmente desconocido

Rango

Cuantitativo

De los que utilizaron <u>herramientas cuantitativas</u> (14 de 17):

50% siempre optó por un **rango de valores** de NoC **50% utilizó ambos** métodos **dependiendo del caso**

XXX Jornadas

Número de contribuyentes (NoC)

NoC estimado correctamente por todos

Mesclas con:

↓ complejidadsin degradación

La mayoría estimó correctamente Algunos estimaron ±1

Rango NoC

- **-1 | Más común** Debido a la interacción entre el <u>umbral</u> analítico (T) y/o ↓ DNA template → menor cantidad de picos.
- **+1** | **Solo 1 lab** para los pares #19 y #29 (ambos con 1:9:9)
- + consideró archivo con artefactos + un <u>↓ T (50 RFU)</u> → stutters del mayoritario se consideraron como un minoritario.

Par #7 y #8 | Solo 3 labs estimaron bien)

La mayoría estimó -1 o -2

DNA template +
 con degradación +
 ↑ desequilibrio de proporciones entre los contribuyentes

(Par # 6 | Nadie estimó bien;

Presentación de resultados de la Comisión de Trabajo:
INTERPRETACIÓN ESTADÍSTICA EN CASOS DE IDENTIFICACIÓN CON MEZCLAS

XXX Jornadas

Número de contribuyentes (NoC)

Cuando los laboratorios <u>permiten que la herramienta evalúe distintos</u> NoC, <u>la estimación de este parámetro puede verse comprometida</u>.

Esto no solo se debe a decisiones relacionadas directamente con el NoC—como <u>establecer un rango inapropiado</u>—, sino también a la <u>configuración de otros parámetros</u>, especialmente el <u>umbral analítico</u>.

XXX Jornadas

Número de contribuyentes (NoC)

Modelado de Stutters

Modelado de Degradación

Solo cuantitativos

N = 14 → La mayoría <u>no modeló ni back ni forward stutters</u>

12 labs
utilizaron archivos
sin artefactos

Introducido

3 labs eligieron
consistentemente no
modelar ninguno stutter

5 labs eligieron consistentemente permitieron que la herramienta probara modelar ambos stutters

(best fit)

PGS

Los restantes utilizaron ambos métodos dependiendo del caso

2 utilizaron archivos **con** artefactos

3 utilizaron archivos **sin** artefactos

Solo para 2 pares sin artefactos los stutters fueron modelados como best-fit

(#4, 1 lab y #7, 4 labs)

XXX Jornadas

Número de contribuyentes (NoC)

Modelado de Stutters

Modelado de Degradación

Solo cuantitativos

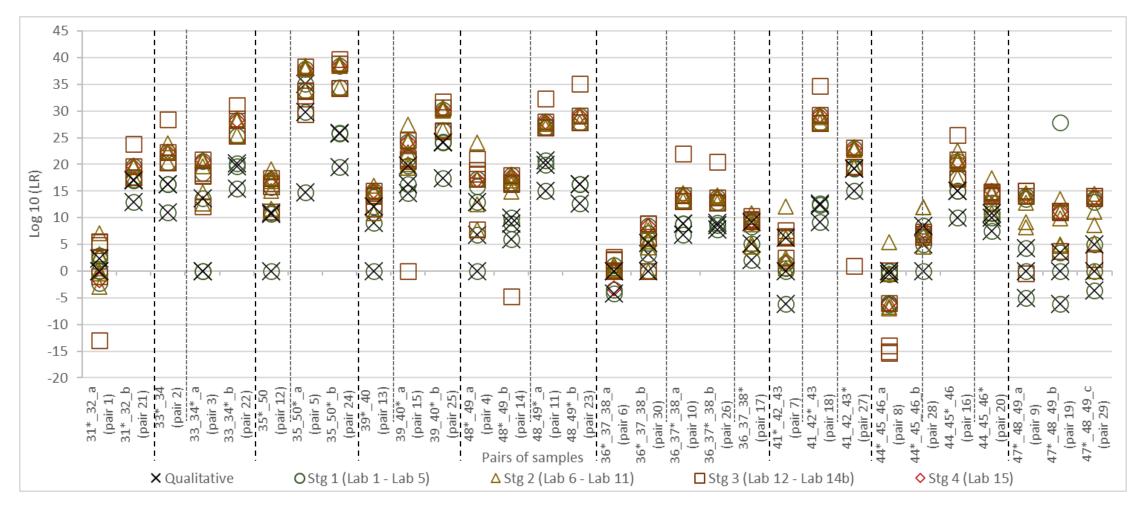
6 labs eligieron permitir consistentemente a la herramienta (PGS) probar modelar (o no) la degradación (best fit)

Muestras con degradación (N=17 de 30)

Todos aplicaron modelado a la degradación

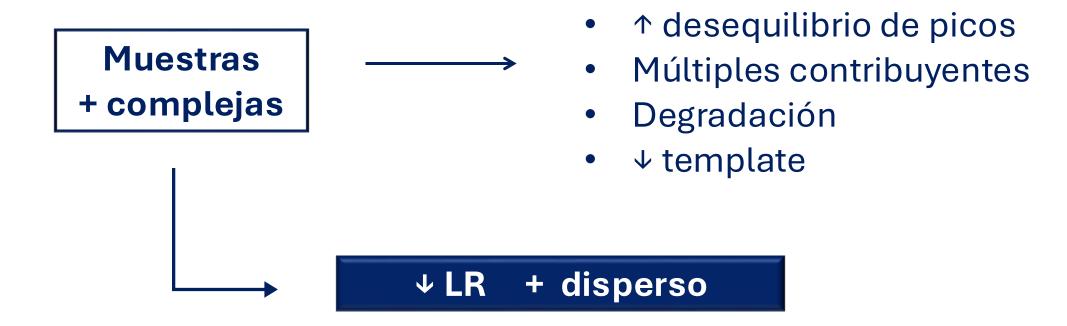
Excepto 1 lab (que utilizó <u>PGS</u>) para par #6
mezcla con <u>→ DNA template + degradación</u>; la mayoría
de los picos estaban por debajo del T considerado

Muestras sin degradación (N=13 de 30)


La mayoría no aplicaron modelado a la degradación; Solo de 1 a 3 labs que modelaron en cada uno de estos pares

De estos, **solo en 3 de los 13 pares** fueran labs que utilizaron **PGS** para determinar modelar o no la degradación; en todos, <u>no modelar fue la segunda opción más adecuada</u>

XXX Jornadas



XXX Jornadas

Como era de esperar,

XXX Jornadas

Resultados con <u>mayor variabilidad y</u> menos consistentes entre laboratorios

Pair ID	Profiles Mixture	ID Ref.	Mixture Proportion	Degradation Treatment (mU DNase I)	DNA in PCR (ng)	LR values Mean	Standard Deviation (stdv)	Notable Features regarding the Mixture Profile
8	44_45_46	44	1:2:2	Untreated	0.075	2.40E-06	5.714	3 contributors with a moderate contributor ratio, and a low DNA amount
9	47_48_49	47	1:9:9	Untreated	0.500	5.93E+10	5.918	3 contributors with a highly imbalanced contributor ratio
14	48_49	48	1:4	6	0.075	1.72E+14	5.884	2 contributors, degraded, with a highly imbalanced contributor ratio and low DNA amount
18	41_42_43	42	1:9:1	12	0.693	1.01E+26	6.961	3 contributors, highly degraded, with a highly imbalanced contributor ratio
19	47_48_49	47	1:9:9	6	0.750	2.68E+09	6.767	3 contributors, degraded, with a highly imbalanced contributor ratio

XXX Jornadas

También podemos demostrar:

• ↑ degradación → ↓ LR + disperso

Pair	Profiles	ID	Mixture	Degradation	DNA in	LR	Standard		
ID	Mixture	Ref.	Proportion	Treatment (mU DNase I)	PCR (ng)	values Mean	Deviation (stdv)		
1	31 32	31	1.1	6	0.030	8.91E+00	4.944		
21	31_32	31	1:1	Untreated	0.062	3.85E+18	2.172		

= mescla / referencia

= template

≠ degradación

XXX Jornadas

También podemos demostrar:

↑ degradación → ↓ LR + disperso

↓ template
 → LR + disperso

Pair	Profiles	ID	Mixture	Degradation	DNA in	LR	Standard
ID	Mixture	Ref.	Proportion	Treatment (mU DNase I)	PCR (ng)	values Mean	Deviation (stdv)
1	31 32	31	1:1	6	0.030	8.91E+00	4.944
21	31_32	31		Untreated	0.062	3.85E+18	2.172
4	48 49	48	1:4	6	0.155	3.88E+15	4.695
14	40_49	40		0	0.075	1.72E+14	5.884

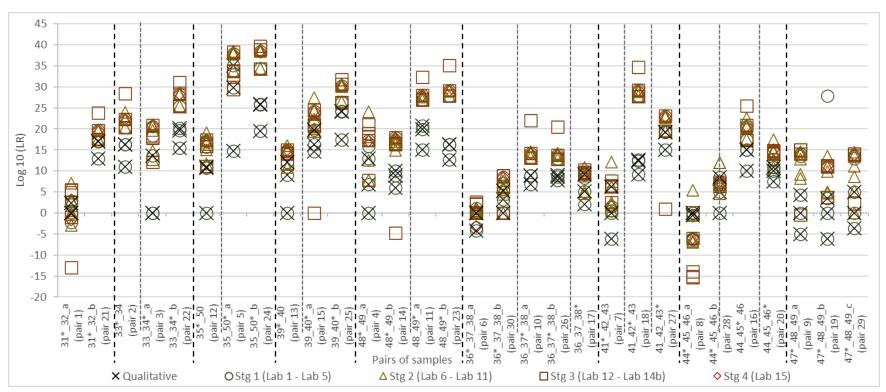
= mescla / referencia

≠ template

= degradación

XXX Jornadas

También podemos demostrar:

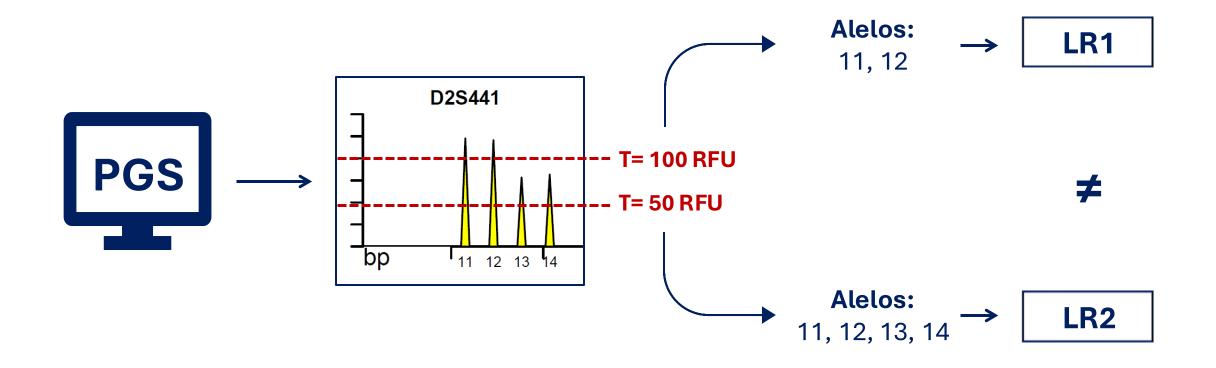

- ↑ degradación → ↓ LR + disperso
- ↓ template
 → LR + disperso
- La cantidad de template tiene un mayor impacto en LR que la degradación

Pair	Profiles	ID	Mixture	Degradation	DNA in	LR	Standard
ID	Mixture	Ref.	Proportion	Treatment (mU DNase I)	PCR (ng)	values Mean	Deviation (stdv)
1	31_32	31	1:1	6	0.030	8.91E+00	4.944
21	31_32	31	1.1	Untreated	0.062	3.85E+18	2.172
4	48 49	48	1:4	6	0.155	3.88E+15	4.695
14	40_49	40	1.4	0	0.075	1.72E+14	5.884
15	39 40	40	1:2	Untreated	0.045	4.07E+21	3.192
25	39_40	40	1:2	6	0.189	6.16E+27	3.557

- = mescla / referencia
- **(15) ↓**template **con** degradación
- (25) ↑template sin degradación

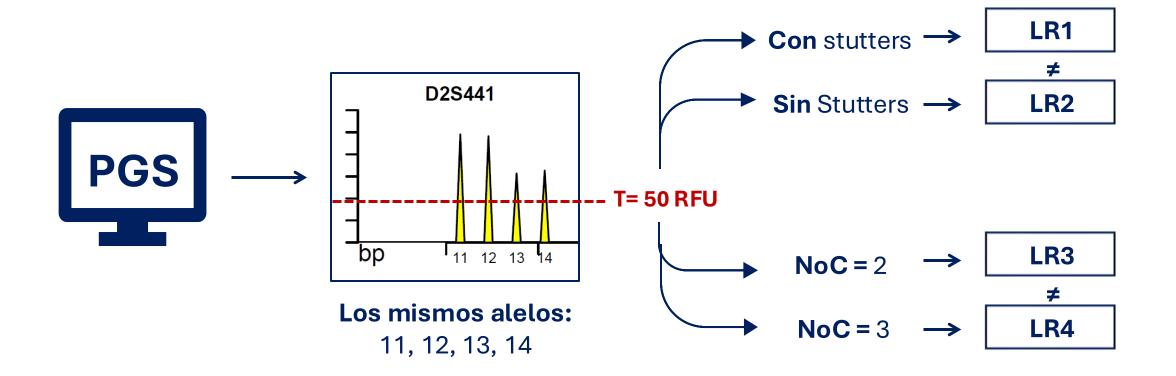
XXX Jornadas

En común:


- Perfiles de mezcla/referencia
- Base de datos de frecuencia de alelica

≠:

- software
- Tipo de archivos
- Parámetros estimados previamente
- Número de contribuyentes
- Modelado de stutters
- Modelado de degradación



XXX Jornadas

XXX Jornadas

De este modo ...

Análisis parámetro

por parámetro

Integrado

Combinación de los **parámetros referidos + configuración genotípica de la mezcla y perfiles de referencia** (en particular, picos stutters)

XXX Jornadas

Conclusiones disponibles para informar junto con los resultados:

- (1) No se puede excluir que la referencia pertenezca a uno de los contribuyentes a la muestra de evidencia
- (2) No concluyente/no informativa
- (3) Se puede excluir que la referencia pertenezca a uno de los contribuyentes a la muestra de evidencia

	Profiles ID				Does the reference belong to one of the contributors to the evidence sample?																	
М	Mixture	Ref.	Pair ID		Т	he refer	ence car	not be exc	luded		N	on-cond	lusive	/ non-inform	native		1	he refe	rence c	an be exclu	ded	Not answered
					N	Ø	LR < 1	LR > 1	Minimum	Maximum	N	Ø	LR < 1	LR > 1	Minimum	Maximum	N	Ø	LR < 1	LR > 1	Minimum	Maximum
2	1 32	31	1	1	-	-	1	-	3.86E+05	11	1	3	7	1.04E-13	1.34E+07	> ‡	1	3	- <	1.34E-03	2.19E-02	> 1
3	1_32		21	17	-	-	17	7.87E+12	7.24E+23	-	-	-	-	-	-	-	-	-	-	-	-	-

CONCLUSIONES FINALES

XXX Jornadas

- Es fundamental realizar un **análisis integrado** que combine parámetros y perfiles genéticos.
- Los expertos deben comprender a fondo los modelos probabilísticos y el impacto de cada parámetro.
- La formación continua es crucial para interpretar y comunicar correctamente análisis complejos.

XXX Jornadas

MUCHAS GRACIAS POR SU ATENCIÓN!

¿PREGUNTAS?

