Table S1. General Aspects. Participants Characterization.

<table>
<thead>
<tr>
<th>Kind of cases that your laboratory examine</th>
<th>GHEP-MIX1 (N = 32)</th>
<th>GHEP-MIX2 (N = 24)</th>
<th>GHEP-MIX3 (N = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (labs)</td>
<td>%</td>
<td>n (labs)</td>
</tr>
<tr>
<td>Forensic</td>
<td>3</td>
<td>9.4</td>
<td>3</td>
</tr>
<tr>
<td>Paternity</td>
<td>5</td>
<td>15.6</td>
<td>3</td>
</tr>
<tr>
<td>Both</td>
<td>24</td>
<td>75.0</td>
<td>18</td>
</tr>
</tbody>
</table>

2. Send DNA profile to Criminal DataBase:

National	7	21.9	8	33.3	5	29.4
Own	2	6.3	2	8.3	2	11.8
Both	4	12.5	4	16.7	6	35.3
No	19	59.4	11	45.8	4	23.5

3. Report results about mixture profiles of autosomal markers:

Yes	14	43.8	16	66.7	12	70.6
No	5	28.1	4	16.7	2	11.8
Only if there is reference sample	5	26.3	5	20.8	3	17.6

4. In case of obtaining a mixture profiles:

They are sent to Criminal DataBases	3	9.4	5	20.8	2	11.8
They are not sent to Criminal DataBases	14	43.8	8	33.3	1	5.9
They are only registered on the reports	15	46.9	10	41.7	8	47.1
They are registered on both reports and Criminal DataBases	N/D	N/D	N/D	N/D	6	35.3

5. When mixture profiles are interpreted, allelic assignment has been carried out by procedure:

Automatic	3	9.4	5	20.8	6	35.3
Manual	18	56.3	12	50.0	2	11.8
Both	10	31.3	6	25.0	9	52.9

6. Your laboratory’s mixture interpretation criterias have been validated:

Yes	5	15.6	3	12.5	4	23.5
No	26	81.3	21	87.5	5	29.4
Validation in progress	N/D	N/D	N/D	N/D	8	47.1

N/D = No Data
Table S2. Technical Aspects. Edition Tools.

<table>
<thead>
<tr>
<th></th>
<th>GHEP-MIX1 (N = 32)</th>
<th>GHEP-MIX2 (N = 24)</th>
<th>GHEP-MIX3 (N = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (labs)</td>
<td>%</td>
<td>n (labs)</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edition Tool</th>
<th>n (labs)</th>
<th>%</th>
<th>n (labs)</th>
<th>%</th>
<th>n (labs)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneMapper</td>
<td>29</td>
<td>90.6</td>
<td>23</td>
<td>95.8</td>
<td>17</td>
<td>100.0</td>
</tr>
<tr>
<td>GeneScan</td>
<td>2</td>
<td>6.3</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Genotyper</td>
<td>1</td>
<td>3.1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>PeakScanner</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>4.2</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

7. Which edition software have you used:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>GHEP-MIX1</th>
<th>GHEP-MIX2</th>
<th>GHEP-MIX3</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 4 STRs with >3 alleles</td>
<td>2</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td>> 3 STRs with >3 alleles</td>
<td>2</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td>> 2 STRs with >3 alleles</td>
<td>6</td>
<td>18.8</td>
<td>3</td>
</tr>
<tr>
<td>Alleles imbalance</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Amelogenin imbalance (exclusively)</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>> 4 STRs with >3 alleles and Alleles imbalance</td>
<td>2</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td>> 3 STRs with >3 alleles and Alleles imbalance</td>
<td>4</td>
<td>12.5</td>
<td>2</td>
</tr>
<tr>
<td>> 2 STRs with >3 alleles and Alleles imbalance</td>
<td>10</td>
<td>31.3</td>
<td>11</td>
</tr>
<tr>
<td>> 3 STRs with >3 alleles and Amelogenin imbalance</td>
<td>1</td>
<td>3.1</td>
<td>0</td>
</tr>
<tr>
<td>> 2 STRs with >3 alleles and Amelogenin imbalance</td>
<td>1</td>
<td>3.1</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>4</td>
<td>12.5</td>
<td>1</td>
</tr>
</tbody>
</table>

8. Which criterias do you use to define a profile as a mixture:

9. In the present exercise, the alleles have been assigned when the peak is higher than:

<table>
<thead>
<tr>
<th>RFUs</th>
<th>GHEP-MIX1</th>
<th>GHEP-MIX2</th>
<th>GHEP-MIX3</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 RFUs</td>
<td>1</td>
<td>3.1</td>
<td>0</td>
</tr>
<tr>
<td>100 RFUs</td>
<td>10</td>
<td>31.3</td>
<td>1</td>
</tr>
<tr>
<td>50 RFUs</td>
<td>21</td>
<td>65.6</td>
<td>15</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table S2. Technical Aspects. Edition Tools.

<table>
<thead>
<tr>
<th></th>
<th>GHEP-MIX1 (N = 32)</th>
<th>GHEP-MIX2 (N = 24)</th>
<th>GHEP-MIX3 (N = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (labs) %</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>1 5.9</td>
</tr>
<tr>
<td>Every</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>1 5.9</td>
</tr>
<tr>
<td>> 15% from principal allele</td>
<td>8 25.0</td>
<td>7 29.2</td>
<td>2 11.8</td>
</tr>
<tr>
<td>> 150 RFUs</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>> 100 RFUs</td>
<td>0 0.0</td>
<td>1 4.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td>> 50 RFUs</td>
<td>0 0.0</td>
<td>1 4.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td>The assignment has been variable depending on which STR marker is taken into account</td>
<td>13 40.6</td>
<td>9 37.5</td>
<td>8 47.1</td>
</tr>
<tr>
<td>> 15% from principal allele and > 150 RFUs</td>
<td>2 6.3</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>> 15% from principal allele and > 100 RFUs</td>
<td>2 6.3</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>> 15% from principal allele and > 50 RFUs</td>
<td>1 3.1</td>
<td>4 16.7</td>
<td>2 11.8</td>
</tr>
<tr>
<td>The assignment has been variable depending on which STR marker is taken into account, and > 150 RFUs</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>The assignment has been variable depending on which STR marker is taken into account, and > 100 RFUs</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>1 5.9</td>
</tr>
<tr>
<td>The assignment has been variable depending on which STR marker is taken into account, and > 50 RFUs</td>
<td>3 9.4</td>
<td>1 4.2</td>
<td>3 17.6</td>
</tr>
<tr>
<td>The assignment has been variable depending on which STR marker is taken into account, and > 15% from principal allele</td>
<td>3 9.4</td>
<td>1 4.2</td>
<td>0 0.0</td>
</tr>
</tbody>
</table>

10. The "stutter" positions (n-4/n+4) have been assigned as possible alleles:

11. Which is / are the principal obstacle/s that your laboratory have to face up to interpret a mixture profiles?

<table>
<thead>
<tr>
<th></th>
<th>GHEP-MIX1</th>
<th>GHEP-MIX2</th>
<th>GHEP-MIX3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of an unique criterion on the laboratory</td>
<td>13 40.6</td>
<td>2 8.3</td>
<td>3 17.6</td>
</tr>
<tr>
<td>Lack of training</td>
<td>16 50.0</td>
<td>6 25.0</td>
<td>3 17.6</td>
</tr>
<tr>
<td>Lack of an unique criterion on the laboratory and Lack of training</td>
<td>1 3.1</td>
<td>6 25.0</td>
<td>5 29.4</td>
</tr>
<tr>
<td>There are not any obstacle</td>
<td>2 6.3</td>
<td>3 12.5</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Others</td>
<td>N/D</td>
<td>N/D</td>
<td>7 29.2</td>
</tr>
</tbody>
</table>

N/D = No Data
Table S3. Statistical Aspects.

<table>
<thead>
<tr>
<th></th>
<th>GHEP-MIX1 (N = 32)</th>
<th>GHEP-MIX2 (N = 24)</th>
<th>GHEP-MIX3 (N = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (labs)</td>
<td>%</td>
<td>n (labs)</td>
<td>%</td>
</tr>
<tr>
<td>Automatic (software)</td>
<td>N/D</td>
<td>11</td>
<td>45.8</td>
</tr>
<tr>
<td>Manual</td>
<td>N/D</td>
<td>7</td>
<td>29.2</td>
</tr>
<tr>
<td>Both</td>
<td>N/D</td>
<td>6</td>
<td>25.0</td>
</tr>
</tbody>
</table>

N/D = No Data

13. LR calculation is carried out by using: Table S3. Statistical Aspects.
Table S4. Samples Discrepancies.

<table>
<thead>
<tr>
<th></th>
<th>GHEP-MIX1 (N = 32)</th>
<th>GHEP-MIX2 (N = 24)</th>
<th>GHEP-MIX3 (N = 17)</th>
<th>Total (N = 79)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1 (1:5)</td>
<td>M2 (1:10)</td>
<td>M3 (1:1)</td>
<td>M4 (1:5)</td>
</tr>
<tr>
<td>Group A</td>
<td>-A</td>
<td>31 37.3</td>
<td>21 13.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td>+A</td>
<td>10 12.0</td>
<td>69 42.6</td>
<td>5 71.4</td>
</tr>
<tr>
<td>Group B</td>
<td>-B</td>
<td>1 1.2</td>
<td>70 43.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td>+B</td>
<td>40 48.2</td>
<td>2 1.2</td>
<td>1 14.3</td>
</tr>
<tr>
<td>Group C</td>
<td>-C</td>
<td>1 1.2</td>
<td>0 0.0</td>
<td>1 14.3</td>
</tr>
<tr>
<td></td>
<td>+C</td>
<td>1 0.8</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>83 31.7</td>
<td>182 61.8</td>
<td>7 2.7</td>
</tr>
</tbody>
</table>

Group A: those which take place at a stutter position (n-4, n+4 or n-3, n+3).
- **-A**: No report of a real allele which is located at a stutter position, which represents a false allelic loss in the profile.
- **+A**: Report of a non-existent allele (actual stutter peak), which represents a false allelic gain in the genetic profile.

Group B: those which occur in a position non-stutter.
- **-B**: No report of a real allele in a non-stutter position, which represents a false allelic loss in the profile.
- **+B**: Report of a non-existent allele in a non-stutter position, which represents a false allelic gain in the genetic profile.

Group C: discrepancies attributable to an incorrect transcription.
Table S5. Statistical Treatment. Locked Hypothesis. (GHEP-MIX2)

Case 1

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Mixture</th>
<th>H_p/H_d</th>
<th>$LR = (H_p:S+U)/(H_d:2U)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21S11</td>
<td>29-31.2</td>
<td>29-30-31.2-32.2</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D7S820</td>
<td>8-12</td>
<td>8-11-12</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D16S539</td>
<td>11-14</td>
<td>11-12-14</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D2S1338</td>
<td>17-19</td>
<td>17-19-25</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>TPOX</td>
<td>8-9</td>
<td>8-9</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D5S818</td>
<td>11</td>
<td>11-12</td>
<td>LR\textsubscript{total}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Mixture</th>
<th>H_p/H_d</th>
<th>$LR = (H_p:S+V)/(H_d:V+U)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21S11</td>
<td>29-31.2</td>
<td>29-30-31.2-32.2</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D7S820</td>
<td>8-12</td>
<td>8-11-12</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D16S539</td>
<td>11-14</td>
<td>11-12-14</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D2S1338</td>
<td>17-19</td>
<td>17-19-25</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>TPOX</td>
<td>8-9</td>
<td>8-9</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D5S818</td>
<td>11</td>
<td>11-12</td>
<td>LR\textsubscript{total}</td>
</tr>
</tbody>
</table>

Case 2

<table>
<thead>
<tr>
<th>Suspect</th>
<th>Mixture</th>
<th>H_p/H_d</th>
<th>$LR = (H_p:S+V)/(H_d:V+U)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21S11</td>
<td>29-31.2</td>
<td>29-30-31.2-32.2</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D7S820</td>
<td>8-12</td>
<td>8-11-12</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D16S539</td>
<td>11-14</td>
<td>11-12-14</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D2S1338</td>
<td>17-19</td>
<td>17-19-25</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>TPOX</td>
<td>8-9</td>
<td>8-9</td>
<td>LR\textsubscript{partial}</td>
</tr>
<tr>
<td>D5S818</td>
<td>11</td>
<td>11-12</td>
<td>LR\textsubscript{total}</td>
</tr>
</tbody>
</table>

Notes

- **LR** = Likelihood Ratio
- **N** = Number of samples
- **%** = Percentage

Mixture

- **D21S11**: 1/12 $l_{29}f_{31.2}$
- **D7S820**: 1/12 $l_{12}f_{8}$
- **D16S539**: 1/12 $l_{14}f_{12}$
- **D2S1338**: 1/12 $l_{18}f_{18}$
- **TPOX**: 1/12 $l_{17}f_{17}$
- **D5S818**: 1/12 $l_{18}f_{18}$

Suspect

- **D21S11**: 29-31.2
- **D7S820**: 8-12
- **D16S539**: 11-14
- **D2S1338**: 17-19
- **TPOX**: 8-9
- **D5S818**: 11

Victim

- **D21S11**: 30-32.2
- **D7S820**: 8-11
- **D16S539**: 12
- **D2S1338**: 19-25
- **TPOX**: 8
- **D5S818**: 11-12
Table S6. Statistical Treatment. Open Hypothesis. (GHEP-MIX3)

<table>
<thead>
<tr>
<th>Case 1 (N = 17)</th>
<th>n (labs)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis Couples (LR = Hₚ/Hₐ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2S/2U</td>
<td></td>
<td>29.4</td>
</tr>
<tr>
<td>(2S/2U) + [(S1+U)/2U] + [(S2+U)/2U]</td>
<td>11</td>
<td>64.7</td>
</tr>
<tr>
<td>[(S1+U)/2U] + [(S2+U)/2U]</td>
<td>1</td>
<td>5.9</td>
</tr>
<tr>
<td>(S+V)/(V+U)</td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>(S+V)/2U</td>
<td></td>
<td>17.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2 (N = 17)</th>
<th>n (labs)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis Couples (LR = Hₚ/Hₐ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S+V)/(V+U)</td>
<td></td>
<td>47.1</td>
</tr>
<tr>
<td>[(S+V)/(V+U)] + [(S+V)/2U]</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>[(S+V)/(V+U)] + [(S+V)/2U] + [(S+V)/(S+U)]</td>
<td>1</td>
<td>5.9</td>
</tr>
<tr>
<td>(S+V)/2U</td>
<td></td>
<td>17.6</td>
</tr>
<tr>
<td>[(S+V)/(V+U)] + [(S+V)/2U] + [(V+U)/2U]</td>
<td>1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Hₚ = Prosecution hypothesis
Hₐ = Defence hypothesis
S = Suspect
V = Victim
U = Unknown
Table S7. Statistical Treatment. Open Hypothesis. LRs combined of Case 1. (GHEP-MIX3)

<table>
<thead>
<tr>
<th>(H_p/H_d = S1+S2) / 2U</th>
<th>LR(_{combined})</th>
<th>n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.17E+10</td>
<td>1</td>
<td>6.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>1.12E+11</td>
<td>9</td>
<td>56.3</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>3.25E+11</td>
<td>4</td>
<td>25.0</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>2.01E+12</td>
<td>1</td>
<td>6.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>2.64E+17</td>
<td>1</td>
<td>6.3</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

| min. | 6.17E+10 |
| Max. | 2.64E+17 |

<table>
<thead>
<tr>
<th>(H_p/H_d = S1+U) / 2U</th>
<th>LR(_{combined})</th>
<th>n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48E+05</td>
<td>10</td>
<td>83.3</td>
<td>58.8</td>
<td></td>
</tr>
<tr>
<td>1.55E+06</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>6.96E+08</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

| min. | 1.48E+05 |
| Max. | 6.96E+08 |

\(N_{partial} \) = 12
\(N_{total} \) = 17

<table>
<thead>
<tr>
<th>(H_p/H_d = S2+U) / 2U</th>
<th>LR(_{combined})</th>
<th>n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.74E+02</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>1.98E+03</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>3.14E+03</td>
<td>6</td>
<td>50.0</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td>3.86E+03</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>8.73E+03</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>9.16E+03</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>3.80E+08</td>
<td>1</td>
<td>8.3</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

| min. | 7.74E+02 |
| Max. | 3.80E+08 |

\(H_p = \) Prosecution hypothesis
\(H_d = \) Defence hypothesis
Table S8. Statistical Treatment. Open Hypothesis. LRs combined of Case 2. (GHEP-MIX3)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR<sub>combined</sub> n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp/Hd = S+V / V+U</td>
<td>3.30E+07</td>
<td>1</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>3.52E+07</td>
<td>11</td>
<td>84.6</td>
</tr>
<tr>
<td></td>
<td>6.96E+08</td>
<td>1</td>
<td>7.7</td>
</tr>
<tr>
<td>min.</td>
<td>3.30E+07</td>
<td>1</td>
<td>7.7</td>
</tr>
<tr>
<td>Max.</td>
<td>6.96E+08</td>
<td>1</td>
<td>7.7</td>
</tr>
<tr>
<td>N<sub>partial</sub></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>total</sub></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR<sub>combined</sub> n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp/Hd = S+V / 2U</td>
<td>1.12E+11</td>
<td>7</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>2.01E+12</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>min.</td>
<td>1.12E+11</td>
<td>7</td>
<td>87.5</td>
</tr>
<tr>
<td>Max.</td>
<td>2.01E+12</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>N<sub>partial</sub></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>total</sub></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR<sub>combined</sub> n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp/Hd = S+V / S+U</td>
<td>7.52E+05</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>min.</td>
<td>7.52E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>7.52E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>partial</sub></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>total</sub></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR<sub>combined</sub> n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp/Hd = S+U / 2U</td>
<td>1.48E+05</td>
<td>2</td>
<td>100.0</td>
</tr>
<tr>
<td>min.</td>
<td>1.48E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>1.48E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>partial</sub></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>total</sub></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>LR<sub>combined</sub> n (labs)</th>
<th>%partial</th>
<th>%total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp/Hd = V+U / 2U</td>
<td>3.14E+03</td>
<td>2</td>
<td>100.0</td>
</tr>
<tr>
<td>min.</td>
<td>3.14E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>3.14E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>partial</sub></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N<sub>total</sub></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hp = Prosecution hypothesis
Hd = Defence hypothesis
Classification of discrepancies

Group A: those which take place at a stutter position (n-4, n+4 or n-3, n+3)

- **Type -A**
 - Contributor 1: 9-12
 - Contributor 2: 11-13
 - Reported by lab: 9-12-13
 - Expected DNA profile: 9-11-12-13

- **Type +A**
 - Contributor 1: 9-12
 - Contributor 2: 9-12
 - Reported by lab: 9-11-12
 - Expected DNA profile: 9-12

Group B: those which occur in a non-stutter position.

- **Type -B**
 - Contributor 1: 16
 - Contributor 2: 11-18
 - Reported by lab: 16-18
 - Expected DNA profile: 11-16-18

- **Type +B**
 - Contributor 1: 20
 - Contributor 2: 23-25
 - Reported by lab: 20-21-23-25
 - Expected DNA profile: 20-23-25
GHEP-MIX01
-M2 (1:10)-

Penta E

18?

Powerplex®

<table>
<thead>
<tr>
<th>Penta E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributor A</td>
<td>Contributor B</td>
</tr>
<tr>
<td>(minor)</td>
<td>(major)</td>
</tr>
<tr>
<td>9-18</td>
<td>8-9</td>
</tr>
</tbody>
</table>

Slide 2
D8S1179

<table>
<thead>
<tr>
<th></th>
<th>11-13</th>
<th>11-13-15</th>
<th>(11)-13-(15)</th>
<th>11-12-13</th>
<th>11-12-13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

D8S1179

<table>
<thead>
<tr>
<th>Contributor A (minor component)</th>
<th>Contributor B (major component)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-15</td>
<td>13</td>
</tr>
</tbody>
</table>

Contributor A (minor component)

Contributor B (major component)
GHEP-MIX01
-M1 (1:5)-

Penta E

<table>
<thead>
<tr>
<th>Contributor A</th>
<th>Contributor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(minor component)</td>
<td>(major component)</td>
</tr>
<tr>
<td>12-13</td>
<td>14-17</td>
</tr>
</tbody>
</table>
GHEP-MIX03
-M2 (1:10)-

Slide 7
GHEP-MIX03
-M2 (1:10)-